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ABSTRACTABSTRACT

A long-standing desire in microbiology is to be able to observe in 

situ and at a molecular level how anaerobes respond to 

atmospheric oxygen. Over the past decade, physics, engineering 

and instrumentation innovations have led to the introduction of 

synchrotron radiation-based infrared spectromicroscopy. Spatial 

resolutions of less than ten micrometers and photon energies of 

less than an electron volt make synchrotron infrared 

spectromicroscopy non-invasive and useful for following the 

course of cellular processes. Here we present a comparative 

study of molecular changes in the obligate anaerobe 

Desulfovibrio vulgaris Hildenborough and the facultative 

anaerobe Shewanella oneidensis during their exposure to 

atmospheric oxygen. Using non-invasive synchrotron radiation-

based Fourier transform infrared (SR-based FTIR) 

spectromicroscopy, we successfully measured directly molecular 

changes in cellular environments in D. vulgaris and in S. 

oneidensis during their exposure to air.  By comparing 

measurements, we were able to identify the time-dependent 

molecular changes in lipids, nucleic acids, proteins, and 

polyglucose. Images from fluorescence and electron 

microscopies provide direct visual images of the corresponding 

morphological changes. 

In this poster we present preliminary results with a primary focus 

on the short term time-dependent changes in cell lipids, nucleic 

acids, proteins, and polyglucose molecules.

OBJECTIVESOBJECTIVES

1. To compare time-dependent molecular changes in the cellular 

environments of D. vulgaris and S. oneidensis during their 

exposure to air using non-invasive synchrotron radiation-

based Fourier transform infrared (SR-based FTIR) 

spectromicroscopy.

2. To gain insight into these molecular changes using images 

from fluorescence and electron microscopy to provide direct 

visual images of the corresponding morphological changes. 

MATERIALS and METHODSMATERIALS and METHODS

Bacteria strains, culture, and growth: Desulfovibrio vulgaris Hildenborough ATCC® Number: 29579 and 

Shewanella oneidensis ATCC® Number: 700550™ were used in this study. The S. oneidensis and D. vulgaris 

Hildenborough cells were grown anaerobically in an anaerobic glovebox incubator at 30°C on yeast-free LS4D agar 

plates containing 50 mM sulfate, 60 mM lactate, Thauers vitamins, trace minerals #3, 0.1 g/L Fe(NH4)2(SO4)2 and 

PIPES. 

Colonies imprinting and maintenance: Colonies that were formed and grown to about 1 mm in diameter 

were imprinted onto functionalized gold-coated microscope slides for SR-FTIR or onto glass microscope slides for the 

membrane integrity stain. They were maintained on the slides at 100% relative humidity and 20°C for 24 hours (SR-

FTIR) or 1 hour (for membrane integrity assay) before the oxidative stress experiments.

Oxidative stress experiments: D. vulgaris Hildenborough on gold-coated slides were transferred anaerobically 

to the microscope stage incubator and infrared spectral reading allowed to reach steady state. We then recorded time 

course of infrared absorption intensity, which were indicative of intracellular chemical conditions in different biologically 

important molecules in D. vulgaris before and after exposure to atmospheric oxygen at 100% relative humidity and 

20°C for 1.5 hours. Similarly, S. oneidensis were transferred to the microscope stage incubator under anaerobic 

conditions. We again recorded time course of infrared absorption intensity, which were indicative of intracellular 

chemical conditions in different biologically important molecules of S. oneidensis cells during their exposure to 

atmospheric oxygen also at 100% relative humidity and 20°C for 1.5 hours.

PRELIMINARY RESULTSPRELIMINARY RESULTS
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Membrane integrity and cell viability using the Live/Dead BaclightTM stain
Samples of cells from oxidative stress experiments were also treated with SYTO 9 and Propidium Iodide dyes from the 

LIVE/DEAD BacLight Kit L-7007 for detection and visualization of their membrane integrity and viability. 

Synchrotron-Radiation based Fourier Transform Infrared (SR-FTIR) spectromicroscopy
A non-invasive analytical tool that can track the progression of biological and biogeochemical processes at a 

diffraction-limited spatial resolution finer than 10 μm without fixing, staining or labeling cells.

Transmission Electron Microscopy (TEM)
Cell suspensions were pelleted, then glutaraldehyde fixed and post-fixed with osmium tetroxide before staining with 

uranyl acetate and dehydrating with a series of increasing concentrations of acetone. The dehydrated cell pellets were 

infiltrated with Epon resin and embedded in pure Epon resin. Ultrathin sections stained with lead citrate and uranyl 

acetate were imaged using a Tecnai transmission electron microscope operating at 100 kV.
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Some cells show membrane 
damage after 30 min air exposure.

After about 90 min of air exposure 
there is an increase in the width and 
decrease electron density of the 
material in the periplasmic space.

Compared to the anaerobic control and the facultative anaerobe S. oneidensis:

Lipids in D. vulgaris cells undergo lipid peroxidation on air exposure, a sign of 
oxidative stress.

Air-exposed D. vulgaris cells experience a relative drop in polyglucose and 
nucleic acids.

Amide I protein within the cell exhibit a complex response suggesting changes 
in the secondary structure of the proteins
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